Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition

Identifieur interne : 00E452 ( Main/Repository ); précédent : 00E451; suivant : 00E453

Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition

Auteurs : RBID : Pascal:02-0124270

Descripteurs français

English descriptors

Abstract

High-quality InGaN quantum well (QW) structures with one, two, three, five, and seven wells were grown by metalorganic chemical vapor deposition. The effect of the number of InGaN QWs on the structural and optical properties was studied by high-resolution x-ray diffraction (HRXRD), atomic force microscopy, low excitation density photoluminescence (PL), high excitation density pulsed PL, and PL excitation (PLE). The 10 K PLE band edge of all the samples is almost same, but the 10 K PL peaks of the InGaN QWs initially blueshifts, and then redshifts as the number of wells increases. HRXRD reciprocal space mapping and high excitation pulsed PL show that this anomalous peak shift is due mainly to potential fluctuations, rather than the piezoelectric field. The degree of potential fluctuations varies with dislocation density, which could be affected by growth interruption, the deposition of strained layers, and the accumulated strain energy in InGaN QW structures. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0124270

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition</title>
<author>
<name sortKey="Yuh, H K" uniqKey="Yuh H">H.-K. Yuh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Materials Science and Engineering, Seoul National University, Seoul 151-742</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, E" uniqKey="Yoon E">E. Yoon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Materials Science and Engineering, Seoul National University, Seoul 151-742</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shee, S K" uniqKey="Shee S">S. K. Shee</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lam, J B" uniqKey="Lam J">J. B. Lam</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Choi, C K" uniqKey="Choi C">C. K. Choi</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gainer, G H" uniqKey="Gainer G">G. H. Gainer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Park, G H" uniqKey="Park G">G. H. Park</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hwang, S J" uniqKey="Hwang S">S. J. Hwang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Song, J J" uniqKey="Song J">J. J. Song</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
<wicri:cityArea>Center for Laser and Photonics Research, Oklahoma State University, Stillwater</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0124270</idno>
<date when="2002-03-01">2002-03-01</date>
<idno type="stanalyst">PASCAL 02-0124270 AIP</idno>
<idno type="RBID">Pascal:02-0124270</idno>
<idno type="wicri:Area/Main/Corpus">00FB79</idno>
<idno type="wicri:Area/Main/Repository">00E452</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Dislocation density</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface structure</term>
<term>Photoluminescence</term>
<term>Red shift</term>
<term>Semiconductor quantum wells</term>
<term>Spectral line shift</term>
<term>Wide band gap semiconductors</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867D</term>
<term>8107S</term>
<term>6865F</term>
<term>7866F</term>
<term>7855C</term>
<term>8105E</term>
<term>6835C</term>
<term>6849U</term>
<term>6837P</term>
<term>6172H</term>
<term>6172L</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Puits quantique semiconducteur</term>
<term>Structure interface</term>
<term>Photoluminescence</term>
<term>Diffraction RX</term>
<term>Déplacement raie</term>
<term>Déplacement vers le rouge</term>
<term>Microscopie force atomique</term>
<term>Densité dislocation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-quality InGaN quantum well (QW) structures with one, two, three, five, and seven wells were grown by metalorganic chemical vapor deposition. The effect of the number of InGaN QWs on the structural and optical properties was studied by high-resolution x-ray diffraction (HRXRD), atomic force microscopy, low excitation density photoluminescence (PL), high excitation density pulsed PL, and PL excitation (PLE). The 10 K PLE band edge of all the samples is almost same, but the 10 K PL peaks of the InGaN QWs initially blueshifts, and then redshifts as the number of wells increases. HRXRD reciprocal space mapping and high excitation pulsed PL show that this anomalous peak shift is due mainly to potential fluctuations, rather than the piezoelectric field. The degree of potential fluctuations varies with dislocation density, which could be affected by growth interruption, the deposition of strained layers, and the accumulated strain energy in InGaN QW structures. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>91</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUH (H.-K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YOON (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHEE (S. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAM (J. B.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHOI (C. K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GAINER (G. H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PARK (G. H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HWANG (S. J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SONG (J. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Laser and Photonics Research, Oklahoma State University, Stillwater, Oklahoma 74078</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>3483-3485</s1>
</fA20>
<fA21>
<s1>2002-03-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0124270</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High-quality InGaN quantum well (QW) structures with one, two, three, five, and seven wells were grown by metalorganic chemical vapor deposition. The effect of the number of InGaN QWs on the structural and optical properties was studied by high-resolution x-ray diffraction (HRXRD), atomic force microscopy, low excitation density photoluminescence (PL), high excitation density pulsed PL, and PL excitation (PLE). The 10 K PLE band edge of all the samples is almost same, but the 10 K PL peaks of the InGaN QWs initially blueshifts, and then redshifts as the number of wells increases. HRXRD reciprocal space mapping and high excitation pulsed PL show that this anomalous peak shift is due mainly to potential fluctuations, rather than the piezoelectric field. The degree of potential fluctuations varies with dislocation density, which could be affected by growth interruption, the deposition of strained layers, and the accumulated strain energy in InGaN QW structures. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05Y</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B60H35C</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B60A10</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B60A16C</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B60A72H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6865F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>6835C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>6849U</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>6837P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>6172H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>6172L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Structure interface</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Interface structure</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Diffraction RX</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>XRD</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Déplacement raie</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Spectral line shift</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Red shift</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Densité dislocation</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Dislocation density</s0>
</fC03>
<fN21>
<s1>063</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0209M001168</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00E452 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00E452 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0124270
   |texte=   Effect of the number of wells on optical and structural properties in InGaN quantum well structures grown by metalorganic chemical vapor deposition
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024